Single-Particle Tunneling in Doped Graphene-Insulator-Graphene Junctions
نویسندگان
چکیده
The characteristics of tunnel junctions formed between nand p-doped graphene are investigated theoretically. The single-particle tunnel current that flows between the twodimensional electronic states of the graphene (2D-2D tunneling) is evaluated. At a voltage bias such that the Dirac points of the two electrodes are aligned, a large resonant current peak is produced. The magnitude and width of this peak are computed, and its use for devices is discussed. The influences of both rotational alignment of the graphene electrodes and structural perfection of the graphene are also discussed.
منابع مشابه
Theory of Graphene-Insulator-Graphene Tunnel Junctions
Graphene-insulator-graphene vertical tunneling structures are discussed from a theoretical perspective. Momentum conservation in such devices leads to highly nonlinear current-voltage characteristics, which with gates on the tunnel junction form potentially useful transistor structures. Two prior theoretical treatments of such devices are discussed; the treatments are shown to be formally equiv...
متن کاملTunneling characteristics in chemical vapor deposited grapheneâ•fihexagonal boron nitrideâ•figraphene junctions
Large area chemical vapor deposited graphene and hexagonal boron nitride was used to fabricate graphene – hexagonal boron nitride – graphene symmetric field effect transistors. Gate control of the tunneling characteristics is observed similar to previously reported results for exfoliated graphene – hexagonal boron nitride – graphene devices. Density-of-states features are observed in the tunnel...
متن کاملTunneling characteristics in chemical vapor deposited graphene – hexagonal boron nitride – graphene junctions
Large area chemical vapor deposited graphene and hexagonal boron nitride was used to fabricate graphene – hexagonal boron nitride – graphene symmetric field effect transistors. Gate control of the tunneling characteristics is observed similar to previously reported results for exfoliated graphene – hexagonal boron nitride – graphene devices. Density-of-states features are observed in the tunnel...
متن کاملDissipation-driven quantum phase transition in superconductor-graphene systems.
We show that a system of Josephson junctions coupled via low-resistance tunneling contacts to graphene substrate(s) may effectively operate as a current switching device. The effect is based on the dissipation-driven superconductor-to-insulator quantum phase transition, which happens due to the interplay of the Josephson effect and Coulomb blockade. Coupling to a graphene substrate with gapless...
متن کاملModulation-doped growth of mosaic graphene with single-crystalline p–n junctions for efficient photocurrent generation
Device applications of graphene such as ultrafast transistors and photodetectors benefit from the combination of both high-quality p- and n-doped components prepared in a large-scale manner with spatial control and seamless connection. Here we develop a well-controlled chemical vapour deposition process for direct growth of mosaic graphene. Mosaic graphene is produced in large-area monolayers w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012